- ✓ Learn basic principles in bioinformatics
 ✓ Familiarize with public databases and analysis tools of bioinformatics

1. Course Information

5. Assignments and Assessment

Exam 1: 100 Exam 2: 100 Exam 3: 100 Final: 200

Graduate students will have additional assessment of completing a term paper (100 pts).

Scale: A >= 90%, B >= 80%, C >= 60%, D >= 40%, F < 40%

6. Schedule of Activities or Assignments, including university -scheduled final exam time (all schedule is tentative and may be subject to change)

1	1/9 – 1/13	Introduction
		Research Overview
		Ch1 The Perennial Question
2	1/16 – 1/20	Jan 16 MLK Holiday
		Ch2 The Nature of Biological Information
3	1/23 – 1/27	Ch3 DNA: The Molecules
		Ch4 The Evolution of Biological Complexity
4	1/30 – 2/3	Ch4 The Evolution of Biological Complexity
		Ch5 Cooperating Genomes; Ch6 DNA, Information and Complexity
		Ch7 Origins of Complexity; Ch8 The Complexities of Societies
		Ch9 Why DNA and Not RNA
5	2/6 – 2/10	
		Introduction to Mathematica
		Linear Regression Analysis using Mathematica

7. Classroom Policy

Students with disabilities who are experiencing barriers in this course may contact the Access Office (https://www.valdosta.edu/student/disability/) for assistance in determining and implementing